RECITATION 10
 L'HÔPITAL'S RULE AND OPTIMIZATION

James Holland

2019-11-05

Section 1. Exercises

Exercise 1

Evaluate $\lim _{x \rightarrow-1} \frac{1-x^{2}}{x+1}$ using l'Hôpital's rule.

Solution .:

As $x \rightarrow-1$, the numerator approaches 0 , as does the denominator. Hence we can apply l'Hôpital's rule, and get that

$$
\lim _{x \rightarrow-1} \frac{1-x^{2}}{x+1}=\lim _{x \rightarrow-1} \frac{-2 x}{1}=2
$$

Exercise 2

Can l'Hôpital's rule be applied to $\lim _{x \rightarrow 0} \frac{x}{\ln (x)}$?

Solution :
No: as x goes to $0, \ln (x)$ goes to $-\infty$, so naïvely the limit wouldn't correspond to an indeterminate form: $0 /-\infty$ isn't $\pm \infty / \infty$ nor $0 / 0$.

- Exercise 3

Evaluate $\lim _{x \rightarrow \infty} e^{x} / x^{3}$ using l'Hôpital's rule.
Solution .:.
Applying l'Hôpital's rule three times, it follows that $\lim _{x \rightarrow \infty} e^{x} / x^{3}=\lim _{x \rightarrow \infty} e^{x} /\left(3 x^{2}\right)=\lim _{x \rightarrow \infty} e^{x} / 6 x=$ $\lim _{x \rightarrow \infty} e^{x} / 1=\infty$.

- Exercise 4

Minimize $x^{2}+y^{2}$ assuming $x y=4$.

Solution .:

Write $f(x, y)=x^{2}+y^{2}$. Since $y=4 / x$, we can regard f as a function of just $x: f(x)=x^{2}+16 / x^{2}$. So now we just need to maximize this.
$f^{\prime}(x)=2 x-32 / x^{3}$ and this is 0 iff $2 x^{4}=32$, i.e. $x= \pm 2$, which give the critical points. $f^{\prime \prime}(x)=$ $2+96 / x^{4}>0$ so that f is always concave up, and therefore $f(\pm 2)=8$ is the minimum value of f.

- Exercise 5

Maximize $e^{x y}$ assuming $x+y=2$ where $x \geq 0$ and $y \geq 0$.

Solution \therefore.
Note that $y=1-x$ so that we want to maximize $f(x)=e^{x(2-x)}=e^{2 x-x^{2}} \cdot f^{\prime}(x)=(2-2 x) e^{2 x-x^{2}}$, which is 0 iff $x=1$. For $x<1, f^{\prime}(x)>0$ and for $x>1, f^{\prime}(x)<0$. Hence $x=1$ yields a maximum of $f(1)=e^{1 \cdot 1}=e$.

Exercise 6

Maximize the area of a right triangle assuming its hypotenuse is $\sqrt{2}$.
Solution :
With a hypotenuse $\sqrt{2}$, the legs of the triangle satisfy $x^{2}+y^{2}=2$. The area of the right triangle is $x y / 2$. Since $y>0$, we have that $y=\sqrt{2-x^{2}}$ and so we want to maximize $A(x)=x y(x) / 2=\frac{x \sqrt{2-x^{2}}}{2}=\frac{\sqrt{2 x^{2}-x^{4}}}{2}$ (this holds because $x>0$).

$$
A^{\prime}(x)=\frac{4 x-4 x^{3}}{4 \sqrt{2 x^{2}-x^{4}}}=\frac{4-4 x^{2}}{4 \sqrt{2 x-x^{2}}}=\frac{1-x^{2}}{\sqrt{2 x-x^{2}}}
$$

This is 0 iff $1=x^{2}$, i.e. $x=1$. This is 0 iff $x=0$ (which is impossible as we're assuming $x>0$ as the leg length of a triangle) or $x=2$ (which is impossible, as we're assuming $y>0$ as the leg length of a triangle). Therefore $x=1$ is the only critical point. One can check that for $0<x<1, A^{\prime}(x)>0$ while for $x>1, A^{\prime}(x)<0$. So by the first-derivative test, $x=1$ yields a maximum area of $A(1)=1 / 2$.

